Benchmarking regulatory network reconstruction with GRENDEL

نویسندگان

  • Brian C. Haynes
  • Michael R. Brent
چکیده

MOTIVATION Over the past decade, the prospect of inferring networks of gene regulation from high-throughput experimental data has received a great deal of attention. In contrast to the massive effort that has gone into automated deconvolution of biological networks, relatively little effort has been invested in benchmarking the proposed algorithms. The rate at which new network inference methods are being proposed far outpaces our ability to objectively evaluate and compare them. This is largely due to a lack of fully understood biological networks to use as gold standards. RESULTS We have developed the most realistic system to date that generates synthetic regulatory networks for benchmarking reconstruction algorithms. The improved biological realism of our benchmark leads to conclusions about the relative accuracies of reconstruction algorithms that are significantly different from those obtained with A-BIOCHEM, an established in silico benchmark. AVAILABILITY The synthetic benchmark utility and the specific benchmark networks that were used in our analyses are available at http://mblab.wustl.edu/software/grendel/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks

Elucidating gene regulatory network (GRN) from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorit...

متن کامل

An integrated data envelopment analysis–artificial neural network approach for benchmarking of bank branches

Efficiency and quality of services are crucial to today’s banking industries. The competition in this section has become increasingly intense, as a result of fast improvements in Technology. Therefore, performance analysis of the banking sectors attracts more attention these days. Even though data envelopment analysis (DEA) is a pioneer approach in the literature as of an efficiency measurement...

متن کامل

Incentive Regulation and Utility Benchmarking for Electricity Network Security

The incentive regulation of costs related to physical and cyber security in electricity networks is an important but relatively unexplored and ambiguous issue. These costs can be part of a cost efficiency benchmarking or alternatively dealt separately. This paper discusses the issues and proposes on the options for incorporating network security costs within incentive regulation in a benchmarki...

متن کامل

Philosophy in John Gardner’s Grendel

John Gardner’s Grendel is a celebrated example of the ontological postmodernist fiction. Along with a discovery of self with which Grendel the narrator of the novel is concerned, grand narratives such as philosophy are questioned. Grendel denies the external objective reality and generously allows the legitimacy of fantastic and non-realistic methods by using “life-affirming fabulous art” as it...

متن کامل

An Efficiency Measurement and Benchmarking Model Based on Tobit Regression, GANN-DEA and PSOGA

The purpose of this study is designing a model based on Tobit regression, DEA, Artificial Neural Network, Genetic Algorithm and Particle Swarm Optimization to evaluate the efficiency and also benchmarking the efficient and inefficient units. This model has three stages, and it uses the data envelopment analysis combined model with neural network, optimized by genetic algorithm, to evaluate the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 25 6  شماره 

صفحات  -

تاریخ انتشار 2009